Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241414

RESUMO

This work presents the electrophysical properties of the multiferroic ceramic composites obtained as a result of combining both magnetic and ferroelectric material. The ferroelectric components of the composite are materials with the following chemical formulas: PbFe0.5Nb0.5O3 (PFN), Pb(Fe0.495Nb0.495Mn0.01)O3 (PFNM1), and Pb(Fe0.49Nb0.49Mn0.02)O3 (PFNM2), while the magnetic component of the composite is the nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4 marked as F). The crystal structure, microstructure, DC electric conductivity, and ferroelectric, dielectric, magnetic, and piezoelectric properties of the multiferroic composites are performed. The conducted tests confirm that the composite samples have good dielectric and magnetic properties at room temperature. Multiferroic ceramic composites have a two-phase crystal structure (ferroelectric from a tetragonal system and magnetic from a spinel structure) without a foreign phase. Composites with an admixture of manganese have a better set of functional parameters. The manganese admixture increases the microstructure's homogeneity, improves the magnetic properties, and reduces the electrical conductivity of composite samples. On the other hand, in the case of electric permittivity, a decrease in the maximum values of εm is observed with an increase in the amount of manganese in the ferroelectric component of composite compositions. However, the dielectric dispersion at high temperatures (associated with high conductivity) disappears.

2.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499955

RESUMO

This paper presents the research results of multiferroic ceramic composites obtained with three sintering methods, i.e., free sintering FS (pressureless), hot pressing HP, and spark plasma sintering SPS. The multiferroic composite was obtained by combining a ferroelectric material of the PZT-type (90%) and zinc-nickel ferrite (10%). Research has shown that the combination of a magnetic material and ferroelectric materials maintains the multiferroic good ferroelectric and magnetic properties of the composites for all sintering methods. A sample sintered with the HP hot pressing method exhibits the best parameters. In the HP method, the composite sample has high permittivity, equal to 910 (at room temperature) and 7850 (at the phase transition temperature), residual polarization 2.80 µC/cm2, a coercive field of 0.95 kV/mm, and the magnetization of 5.3 and 4.95 Am2/kg at -268 °C and RT, respectively. Optimal technological process conditions are ensured by the HP method, improving the sinterability of the ceramic sinter which obtains high density and proper material compaction. In the case of the SPS method, the sintering conditions do not allow for homogeneous growth of the ferroelectric and magnetic component grains, increasing the formation of internal pores. On the other hand, in the FS method, high temperatures favor excessive grain growth and an increase in the heterogeneity of their size. In obtaining optimal performance parameters of multiferroic composites and maintaining their stability, hot pressing is the most effective of the presented sintering methods.

3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361967

RESUMO

The comprehensive research of magnetic and electronic structure properties of the new class of Gd0.4Tb0.6(Co1-xNix)2 compounds, crystallizing in the cubic Laves phase (C15), is reported. The magnetic study was completed with electrical resistivity and electronic structure investigations. The analysis of Arrott plots supplemented by a study of temperature dependency of Landau coefficients revealed that all compounds undergo a magnetic phase transition of the second type. Based on magnetic isotherms, magnetic entropy change (ΔSM) was determined for many values of the magnetic field change (µ0H), which varied from 0.1 to 7 T. For each compound, the ΔSM had a maximum around the Curie temperature. Both values of the |ΔSMmax| and relative cooling power RCP parameters increased with increasing nickel content. It is shown that structural disorder upon Co/Ni substitution influences some magnetic parameters. The magnetic moment values of Co atoms determined from different methods are quantitatively consistent. From the M(T) dependency, the exchange integrals JRR, JRT, and JTT between rare-earths (R) and transition metal (T) moments were evaluated within the mean-field theory (MFT) approach. The experimental study of the electronic structure performed with the use of the X-ray photoelectron spectroscopy (XPS) was completed by calculations using the full-potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT). The calculations explained experimentally observed changes in the XPS valence band spectra upon the Ni/Co substitution.


Assuntos
Magnetismo , Elementos de Transição , Modelos Moleculares , Elementos de Transição/química , Fenômenos Magnéticos , Eletrônica
4.
Materials (Basel) ; 15(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36233859

RESUMO

The paper refers to the spring-exchange magnetic systems containing magnetically soft and hard phases. This work consists of two parts. The first part is a brief review of hard magnetic materials, with special attention paid to ultra-high coercive compounds, as well as selected spring-exchange systems. The second part is a theoretical discussion based on the Monte Carlo micromagnetic simulations about the possible enhancement of the hard magnetic properties of systems composed of magnetically soft, as well as high and ultra-high coercive, phases. As shown, the analyzed systems reveal the potential for improving the |BH|max parameter, filling the gap between conventional and Nd-based permanent magnets. Moreover, the carried-out simulations indicate the advantages and limitations of the spring-exchange composites, which could lead to a reduction in rare earth elements in permanent magnet applications.

5.
Materials (Basel) ; 15(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35888426

RESUMO

Classical modeling of structural phenomena occurring in InP crystal, for example plastic deformation caused by contact force, requires an interatomic interaction potential that correctly describes not only the elastic properties of indium phosphide but also the pressure-induced reversible phase transition B3↔B1. In this article, a new parametrization of the analytical bond-order potential has been developed for InP. The potential reproduces fundamental physical properties (lattice parameters, cohesive energy, stiffness coefficients) of the B3 and B1 phases in good agreement with first-principles calculations. The proposed interaction model describes the reversibility of the pressure-induced B3↔B1 phase transition as well as the formation of native point defects in the B3 phase.

6.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897531

RESUMO

Nanoindentations and the Raman spectroscopy measurements were carried out on the (001) surface of undoped and S-doped InP crystal. The samples were indented with the maximum load ranging from 15 mN to 100 mN. The phase transition B3→B1 was not confirmed by spectroscopic experiments, indicating a plastic deformation mechanism governed by dislocations activity. Increasing the maximum indentation load shifts and the longitudinal and transverse optical Raman bands to lower frequencies reveals a reduction in the elastic energy stored in the plastic zone right below the indentation imprint. Mechanical experiments have shown that a shift in Raman bands occurs alongside the indentation size effect. Indeed, the hardness of undoped and S-doped InP crystal decreases as a function of the maximum indentation load.

7.
Materials (Basel) ; 14(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361350

RESUMO

With classical molecular dynamics simulations, we demonstrated that doping of the InP crystal with Zn and S atoms reduces the pressure of the B3→B1 phase transformation as well as inhibits the development of a dislocation structure. On this basis, we propose a method for determining the phenomenon that initiates nanoscale plasticity in semiconductors. When applied to the outcomes of nanoindentation experiments, it predicts the dislocation origin of the elastic-plastic transition in InP crystal and the phase transformation origin of GaAs incipient plasticity.

8.
Materials (Basel) ; 14(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064940

RESUMO

In this paper, ferroelectric-ferrimagnetic ceramic composites based on multicomponent PZT-type (PbZr1-xTixO3-type) material and ferrite material with different percentages in composite compositions were obtained and studied. The ferroelectric component of the composite was a perovskite ceramic material with the chemical formula Pb0.97Bi0.02(Zr0.51Ti0.49)0.98(Nb2/3Mn1/3)0.02O3 (P), whereas the magnetic component was nickel-zinc ferrite with the chemical formula Ni0.5Zn0.5Fe2O4 (F). The process of sintering the composite compounds was carried out by the free sintering method. Six ferroelectric-ferrimagnetic ceramic P-F composite compounds were designed and obtained with different percentages of its components, i.e., 90/10 (P90-F10), 85/15 (P85-F15), 80/20 (P80-F20), 60/40 (P60-F40), 40/60 (P40-F60), and 20/80 (P20-F80). X-ray diffraction patterns, microstructural, ferroelectric, dielectric, magnetic properties, and DC electrical conductivity of the composite materials were investigated. In this study, two techniques were used to image the microstructure of P-F composite samples: SB (detection of the signals from the secondary and backscattered electron detectors) and BSE (detection of backscattered electrons), which allowed accurate visualization of the presence and distribution of the magnetic and ferroelectric component in the volume of the composite samples. The studies have shown that at room temperature, the ceramic composite samples exhibit good magnetic and electrical properties. The best set of physical properties and performance of composite compositions have ceramic samples with a dominant phase of ferroelectric component and a small amount of the ferrite component (P90-F10). Such a composition retains the high ferroelectric properties of the ferroelectric component in the composite while also acquiring magnetic properties. These properties can be prospectively used in new types of memory and electromagnetic converters.

9.
Materials (Basel) ; 14(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066302

RESUMO

This paper refers to the structural and magnetic properties of [(Fe80Nb6B14)0.88Dy0.12]1-xZrx (x = 0; 0.01; 0.02; 0.05; 0.1; 0.2; 0.3; 0.5) alloys obtained by the vacuum mold suction casting method. The analysis of the phase contribution indicated a change in the compositions of the alloys. For x < 0.05, occurrence of the dominant Dy2Fe14B phase was observed, while a further increase in the Zr content led to the increasing contribution of the Fe-Zr compounds and, simultaneously, separation of crystalline Dy. The dilution of (Fe80Nb6B14)0.88Dy0.12 in Zr strongly influenced the magnetization processes of the examined alloys. Generally, with the increasing x parameter, we observed a decrease in coercivity; however, the unexpected increase in magnetic saturation and remanence for x = 0.2 and x = 0.3 was shown and discussed.

10.
Materials (Basel) ; 14(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809561

RESUMO

The paper refers to Monte Carlo magnetic simulations for fractal-like nano and mesoscopic grains. The analyzed objects differed in the size, surface development, magnetic anisotropy and the spin values attributed to the system nodes inside the fractal. Such an approach allowed us to determine their magnetization processes as well as optimization characteristics in the direction to enhancement of hard magnetic properties. As it was shown, the size effects depend on the chosen value of magnetic anisotropy. In the case of fractals with ultra-high coercivity, the decreasing of their size leads to deterioration of coercivity, especially for the high surface to volume ratio. Opposite effects were observed for soft magnetic fractals when the nanostructure caused an appearance of the coercive field, and the maximum of energy product was predictably significantly higher than for conventional rare earths' free permanent magnets.

11.
Materials (Basel) ; 13(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271989

RESUMO

We report on the comprehensive experimental and theoretical studies of magnetic and electronic structural properties of the Gd0.4Tb0.6Co2 compound crystallization in the cubic Laves phase (C15). We present new results and compare them to those reported earlier. The magnetic study was completed with electronic structure investigations. Based on magnetic isotherms, magnetic entropy change (ΔSM) was determined for many values of the magnetic field change (Δµ0H), which varied from 0.1 to 7 T. In each case, the ΔSM had a maximum around room temperature. The analysis of Arrott plots supplemented by a study of temperature dependency of Landau coefficients revealed that the compound undergoes a magnetic phase transition of the second type. From the M(T) dependency, the exchange integrals between rare-earth R-R (JRR), R-Co (JRCo), and Co-Co (JCoCo) atoms were evaluated within the mean-field theory approach. The electronic structure was determined using the X-ray photoelectron spectroscopy (XPS) method as well as by calculations using the density functional theory (DFT) based Full Potential Linearized Augmented Plane Waves (FP-LAPW) method. The comparison of results of ab initio calculations with the experimental data indicates that near TC the XPS spectrum collects excitations of electrons from Co3d states with different values of exchange splitting. The values of the magnetic moment on Co atoms determined from magnetic measurements, estimated from the XPS spectra, and results from ab initio calculations are quantitatively consistent.

12.
Int J Nanomedicine ; 15: 7433-7450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116480

RESUMO

PURPOSE: Salicyl (Sal) - among other oxygen functionalities - multi-walled carbon nanotubes (MWCNTs) and their nanohybrids are investigated as promising contrast agents (CA) in magnetic resonance imaging (MRI) or drug delivery platforms, due to their unique properties. The preliminary results and the literature reports were the motivation to endow high r2 relaxivities, excellent dispersibility in water, and biocompatibility to superparamagnetic MWCNTs nanohybrids. It was hypothesized that these goals could be achieved by, not described in the literature yet, two-stage oxygen functionalization of MWCNTs. RESULTS: Two structurally different MWCNT materials differing in diameters (44 and 12 nm) and the iron content (4.7% and 0.5%) are studied toward the functionalization effect on the T2 relaxometric properties. MWCNT oxidation is typically the first step of functionalization resulting in "first generation" oxygen functional groups (OFGs) on the surface. Until now, the impact of OFGs on the relaxivity of MWCNT was not truly recognized, but this study sheds light on this issue. By follow-up functionalization of oxidized MWCNT with 4-azidosalicylic acid through [2+1] cycloaddition of the corresponding nitrene, "second generation" of oxygen functional groups is grafted onto the nanohybrid, ie, Sal functionality. CONCLUSION: The introduced OFGs are responsible for an almost 30% increase in the relaxivity, which leads to remarkable r2 relaxivity of 951 mM-1s-1 (419 (mg/mL)-1s-1), the unprecedented value reported to date for this class of CAs. Also, the resulting nanohybrids express low cytotoxicity and superb diffusion after subcutaneous injection to a mouse.


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Nanotubos de Carbono/química , Oxigênio/química , Animais , Azidas/química , Reação de Cicloadição , Camundongos Endogâmicos C57BL , Oxirredução , Prótons , Salicilatos/química , Água/química
13.
Materials (Basel) ; 13(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825650

RESUMO

This paper refers to Monte Carlo magnetic simulations for large-scale systems. We propose scaling rules to facilitate analysis of mesoscopic objects using a relatively small amount of system nodes. In our model, each node represents a volume defined by an enlargement factor. As a consequence of this approach, the parameters describing magnetic interactions on the atomic level should also be re-scaled, taking into account the detailed thermodynamic balance as well as energetic equivalence between the real and re-scaled systems. Accuracy and efficiency of the model have been depicted through analysis of the size effects of magnetic moment configuration for various characteristic objects. As shown, the proposed scaling rules, applied to the disorder-based cluster Monte Carlo algorithm, can be considered suitable tools for designing new magnetic materials and a way to include low-level or first principle calculations in finite element Monte Carlo magnetic simulations.

14.
J Biomol Struct Dyn ; 35(3): 551-563, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26872619

RESUMO

Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066-.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.


Assuntos
Colágeno Tipo I/química , Córnea , Adulto , Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestrutura , Córnea/metabolismo , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade , Conformação Proteica , Relação Estrutura-Atividade
15.
Nanoscale ; 8(5): 2832-43, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763792

RESUMO

The properties of ß-NaEuF4/NaGdF4 core-shell nanocrystals have been thoroughly investigated. Nanoparticles with narrow size distribution and an overall diameter of ∼22 nm have been produced with either small ß-NaEuF4 cores (∼3 nm diameter) or large ß-NaEuF4 cores (∼18 nm diameter). The structural properties and core-shell formation are investigated by X-ray diffraction, transmission electron microscopy and electron paramagnetic resonance, respectively. Optical luminescence measurements and X-ray photoelectron spectroscopy are employed to gain information about the optical emission bands and valence states of the rare earth constituents. Magnetic characterization is performed by SQUID and X-ray magnetic circular dichroism measurements at the rare earth M(4,5) edges. The characterization of the core-shell nanoparticles by means of these complementary techniques demonstrates that partial intermixing of core and shell materials takes place, and a significant fraction of europium is present in the divalent state which has significant influence on the magnetic properties. Hence, we obtained a combination of red emitting Eu(3+) ions and paramagnetic Gd(3+) ions, which may be highly valuable for potential future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...